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INTRODUCTION 
 
For offshore oil and gas platforms and other complex petroleum industry facilities, the focus of 
intelligent asset management usually includes some form of real-time equipment monitoring. A 
relatively high level of capability maturity has been achieved by both offshore operators and rig owners 
in terms of monitoring subsurface flow and production equipment (Oberwinkler and Stundner, 2005). 
Advanced applications of artificial neural networks (ANN) have been used for processes such as gas 
lift optimization and reservoir modeling. In some cases predictive analytics have been applied to 
attempt to optimize spending on proactive vs. reactive maintenance work orders (Figure 1). 
 

 
 
Figure 1: Example range of proactive (blue) vs. reactive (orange) maintenance spend for a group of 
onshore and offshore oil and gas production assets.   
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BUSINESS CASE 
 
Despite active and industry standard tracking of such Key Performance Indicators (KPI's), reactive 
maintenance spend, that is, spending to fix equipment after an uplanned downtime incident, can be as 
much as 85% of total work order spending for older operational assets. The I-Platform application 
provides timely threshold alerts enabling either proactive replacement of equipment at remote locations 
before downtime events or continued operation under optimum conditions, avoiding unnecessary non-
productive time based on arbitrary maintenance schedules. Practical applications include extending the 
time between maintenance cycles based on actual or predicted increases in Mean Time Between Failure 
(MTBF) for critical equipment components, based on data mined from a global database of 
performance for similar components in similar operating environments, and vetted with input from 
industry Subject Matter Experts (SME's). By delaying routine maintenance and allowing more working 
cycles before taking a system down for work, rig owners can maximize income from Service Level 
Agreements (SLA's) based on productive time (Figure 2), and avoid costly unplanned downtime that 
could impact day-rate revenue. With rates for deepwater rigs in the Gulf of Mexico averaging 
approximately USD$400,000 per day, this is a powerful business case. Alternatively, receiving 
indications that critical maintenance or replacement is imminent based on the proven predictive 
capabilities of the ANN can similarly avoid costly downtime events by recommending work orders 
based on trends in historical and real-time data. Other recent case studies point to cost savings from 
avoiding regulatory penalties for emissions above Environmental Protection Agency (EPA) standards in 
the U.S. Gulf of Mexico, and increased production from keeping Electric Submersible Pumps (ESP) in 
service (Dunham, 2009) and determining the best strategies for staging spares. In the case of ESP 
failure modes, the objective is to extend ESP run life from 180 to 720 days, decreasing workover costs 
by 4%, or over USD$20 M per year. 
 

 
 
Figure 2: Example of predictive notification for pending maintenance or replacement for oil and gas 
field operations. 
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A recent Society of Petroleum Engineers (SPE) Digital Energy Workshop used example production 
rates, product and personnel cost, operating expenses and implementation timelines to determine that I-
Platform deployments could achieve a net cost payout in as little as 3 months and achieve Returns on 
Investment (ROI) of over 2000% (Farid, 2010). A survey commissioned for the workshop found that 
for 41 case studies selected from 105 candidates for their factual data on value received from 
real time data, more than one-third (36.6%) reported value in terms of increased well production 
(Figure 3). 
 

 
 
Figure 3: Business cases for real time data optimization from the SPE workshop 
 
Reported  gains from using real-time data  include a 1% increase in production using advanced 
collaborative environments for BP in the UK Continental Shelf, amounting to approximately 7,800 
BOED (Goodwin et. al., 2010), Shell's realization of at least USD$3 billion in value from the 
implementation of digital oilfield tools and technologies around the world (Perrons, 2010), Saudi 
Aramco's capability for co-mingling real-time surface and reservoir data to enable continuous real-time 
mapping of isobaric data that previously took 6 months to generate (Khamis et. al., 2009), and BP 
Trinidad using field optimization to improve condensate production by 7%, or 1900 BOPD, and add 
4 Bcf to proven reserves (Ramdial et. al., 2009). 
 
While a great deal of focus and technology has been applied to subsurface production equipment on 
such operating assets, one area where the oil and gas industry falls behind other technology-intensive 
segments such as aircraft and processing plants is in proactive monitoring of surface equipment. One 
study (Athens Group, 2009) recently showed that up to 20% of the non-productive time (NPT) 
experienced by a deepwater rig can be the result of control system failures on drilling or production 
equipment. But similar failures can impact the fixed surface equipment on the rig floor that can also 
shut down drilling or production operations. Effective monitoring, maintenance and management of the 
complex, software-dependent control systems from multiple equipment vendors on the rig floor can be 
a major determinant of productivity for intelligent platform (I-Platform) implementations (Figure 4).  
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Primary business drivers for an intelligent platform solution can be categorized as reduction of both 
equipment downtime and personnel-on-board (POB) requirements, and attendant measurable increases 
in reliability, safety, regulatory compliance and environmental responsibility. Systems that impact these 
KPI's can include propulsion, power generation, emissions, marine integrity, and ballast compensation. 
 

 
 
Figure 4: Typical KPI dashboard for subsystems of an offshore oil and gas production platform. 
 

METHODOLOGY 
 
The methodology adopted by intelligent platform deployments is to use proven analytic techniques 
such as self-organizing maps and cascade-forward back propagation ANN to provide predictive 
modeling using historical and real-time data streams from multiple sensors on the operating asset. In 
many cases, the data streams from SCADA and other Process Logic Control (PLC) interfaces are 
already being collected, aggregated and transmitted to shore for the critical surface equipment. 
However, many operators and service companies report that the sheer volume of data is often so 
overwhelming that regular or rigorous analysis is not performed, and key diagnostic conditions that 
may be precursors may be overlooked before a critical failure or incident (Palmer, 2010). 
 
In an intelligent platform solution, data streams from a real time historian (RTH) database and 
operating envelope data from the equipment manufacturers are used as as a feed directly into each layer 
of the neural network.  As a result, the network is able to model nonlinear relationships using up to 
fourth-order polynomials.  The back propagation indicates that all functions used in the network are 
both continuous and differentiable which means that the error between the actual and expected results 
can be used to train the network. Running these types of  functions against test data provided by 
operators generates an error vector in  the neural network workspace.  The vector contains the 
calculated error between the actual and simulated dependent data streams, based on test data that was 
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not used in the neural network training. Thus it accurately describes the model's ability to predict 
output parameters based on multiple aggregated input data streams. In initial tests with actual data from 
offshore operating platforms, standard deviations on this vector have been calculated at 5.16 with a 
mean of 0.27. Recent projects have identified areas where offshore operators can gain operating 
efficiencies by using artificial intelligence tools such as neural networks and self-organizing maps to 
deliver key performance indicators based on manufacturer's operating specifications and actual 
equipment performance history (Figure 5). Current predictive capabilities for examples of mono-
nitrogen oxides (NOx) emissions from power generation equipment are in the hour to day range, but 
the trends produced by the ANN show that with sufficient historical data from a range of operating 
environments, this could be extended out to weeks or months.  
 

 
 
Figure 5: Actual (blue) vs. predicted (green) output for a test data stream from an offshore operating 
plaform.  
 
One example of a practical use of this technique would be to optimize the operating levels of power 
generation equipment while maintaining environmental emissions below a regulatory mandated upper 
threshold. One of our early tests with field data used data streams such as generator output, operating 
temperature, cooling pump performance and battery voltage to effectively predict levels of nitrogen 
oxide (NOX) emissions on an offshore platform. Over 6000 input data sets were used to train the 
model, providing the operator with the necessary information to plan and implement procedures for 
moving a drilling rig between areas of the Gulf of Mexico with different state-regulated emissions 
guidelines. Previous to the ANN analysis, this data had been collected in spreadsheets and multiple 
disparate data base formats, but not rigorously evaluated with analytic numerical techniques. 
 
Defining operating envelopes that optimize equipment usage for costs and efficiencies allows early 
identification and intervention for pending equipment outages and enables root-cause failure analysis 
that takes into account multiple environmental factors. Since the use of similar intelligent platform 
technology has already been proven for subsurface drilling and production data streams and has 
reached a competent level of capability maturity (Heiberger, 2009), there has been more recent interest 
in extending these capabilities to surface rotating and reciprocating equipment data streams. Another 
recent industry survey (Benwell, 2010) concluded that since individual equipment vendors rarely 
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understand how a failure in another vendor’s system impacts theirs and since they have no control over 
the availability of other vendor personnel or the configuration of other vendors’ systems, the ability to 
combine actionable data streams from multiple equipment subsystems will be one of key requirements 
for software-specific risk mitigation and problem remediation services. 
 
Results of the data mining and analysis are delivered in a role-based and easily configurable visual 
dashboard for multiple aggregated data streams. A recent prototype installation utilizes data streams 
from a major offshore drilling contractor with a versatile fleet of mobile offshore drilling units and an 
operational performance center at a leading oilfield service company to demonstrate the viability of this 
approach for both offshore and remote onshore operations. The success of this proof of concept 
demonstrates that disparate data from multiple equipment vendors can be gathered from remote 
locations, analyzed and distilled into actionable items, transmitted across existing infrastructure and 
bandwidth, and displayed in order to support proactive decisions by a distributed pool of subject matter 
experts. Recent projects involved power and fuel supply, energy management, mooring systems, 
thruster machinery, automated rig state detection, flow controls, and emission and regulatory reporting 
for NOx. The technology leverages advances in sensor size, deployment, resolution and frequency and 
limited global pools of subject matter experts to reduce operating costs. 
 

CONCLUSION 
 
The I-Platform solution applies best practices derived from numerous digital oilfield case studies to 
fixed surface equipment in order to reduce NPT. The aggregation of multiple datastreams from the 
platform, the  use of predictive analytics and numerical analysis and the creation of an evolving 
historical database of trends and business rules all make this a solution unique to the offshore oilfield 
and ideally positioned to leverage current interest in optimizing operations. This solution is an end-to-
end implementation for surface equipment that brings together mission-critical capabilities developed 
and already being deployed for downhole operations. It utilizes unique data analysis tools with artificial 
intelligence algorithms for codifying existing equipment expertise into business rules such as neural 
networks and self-organizing maps.  
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